{ "id": "1311.1842", "version": "v1", "published": "2013-11-07T22:56:00.000Z", "updated": "2013-11-07T22:56:00.000Z", "title": "Extremal Domains for Self-Commutators in the Bergman Space", "authors": [ "Matthew Fleeman", "Dmitry Khavinson" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "In arXiv:1305.5193v1, the authors have shown that Putnam's inequality for the norm of self-commutators can be improved by a factor of $\\frac{1}{2}$ for Toeplitz operators with analytic symbol $\\varphi$ acting on the Bergman space $A^{2}(\\Omega)$. This improved upper bound is sharp when $\\varphi(\\Omega)$ is a disk. In this paper we show that disks are the only domains for which the upper bound is attained.", "revisions": [ { "version": "v1", "updated": "2013-11-07T22:56:00.000Z" } ], "analyses": { "keywords": [ "bergman space", "extremal domains", "self-commutators", "upper bound", "toeplitz operators" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.1842F" } } }