{ "id": "1311.1405", "version": "v3", "published": "2013-11-06T14:28:34.000Z", "updated": "2016-04-26T12:31:27.000Z", "title": "Sharp results for the Weyl product on modulation spaces", "authors": [ "Elena Cordero", "Joachim Toft", "Patrik Wahlberg" ], "comment": "In this update we have corrected a sign error in the exponent in Eq. (1.7), and its consequences in Prop. 1.5 and Eq. (2.30)", "journal": "J. Funct. Anal. 267 (8), 3016-3057, 2014", "categories": [ "math.FA" ], "abstract": "We give sufficient and necessary conditions on the Lebesgue exponents for the Weyl product to be bounded on modulation spaces. The sufficient conditions are obtained as the restriction to $N=2$ of a result valid for the $N$-fold Weyl product. As a byproduct, we obtain sharp conditions for the twisted convolution to be bounded on Wiener amalgam spaces.", "revisions": [ { "version": "v2", "updated": "2014-02-14T10:01:12.000Z", "comment": "39 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2016-04-26T12:31:27.000Z" } ], "analyses": { "subjects": [ "35S05", "42B35", "44A35", "46E35", "46F12" ], "keywords": [ "modulation spaces", "sharp results", "wiener amalgam spaces", "fold weyl product", "lebesgue exponents" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.1405C" } } }