{ "id": "1311.1157", "version": "v1", "published": "2013-11-05T18:50:41.000Z", "updated": "2013-11-05T18:50:41.000Z", "title": "Extremal functions with vanishing condition", "authors": [ "Friedrich Littmann", "Mark Spanier" ], "categories": [ "math.CA" ], "abstract": "We determine the optimal majorant $M^+$ and minorant $M^-$ of exponential type for the truncation of $x\\mapsto (x^2+a^2)^{-1}$ with respect to general de Branges measures. We prove that \\[ \\int_\\mathbb{R} (M^+ - M^-) |E(x)|^{-2}dx = \\frac{1}{a^2 K(0,0)} \\] where $K$ is the reproducing kernel for $\\mathcal{H}(E)$. As an application we determine the optimal majorant and minorant for the Heaviside function that vanish at a fixed point $\\alpha = ia$ on the imaginary axis. We show that the difference of majorant and minorant has integral value $(\\pi a - \\tanh(\\pi a))^{-1} \\pi a$.", "revisions": [ { "version": "v1", "updated": "2013-11-05T18:50:41.000Z" } ], "analyses": { "subjects": [ "41A30", "41A52", "41A05", "41A44", "42A82" ], "keywords": [ "extremal functions", "vanishing condition", "optimal majorant", "branges measures", "heaviside function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.1157L" } } }