{ "id": "1311.0764", "version": "v1", "published": "2013-11-04T16:44:27.000Z", "updated": "2013-11-04T16:44:27.000Z", "title": "Submatrices of Hadamard matrices: complementation results", "authors": [ "Teo Banica", "Ion Nechita", "Jean-Marc Schlenker" ], "journal": "Electron. J. Linear Algebra 27 (2014), 197-212", "categories": [ "math.CO", "math.FA" ], "abstract": "Two submatrices $A,D$ of a Hadamard matrix $H$ are called complementary if, up to a permutation of rows and columns, $H=[^A_C{\\ }^B_D]$. We find here an explicit formula for the polar decomposition of $D$. As an application, we show that under suitable smallness assumptions on the size of $A$, the complementary matrix $D$ is an almost Hadamard sign pattern, i.e. its rescaled polar part is an almost Hadamard matrix.", "revisions": [ { "version": "v1", "updated": "2013-11-04T16:44:27.000Z" } ], "analyses": { "subjects": [ "15B34" ], "keywords": [ "hadamard matrices", "complementation results", "submatrices", "hadamard matrix", "rescaled polar part" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.0764B" } } }