{ "id": "1311.0717", "version": "v1", "published": "2013-11-04T14:52:05.000Z", "updated": "2013-11-04T14:52:05.000Z", "title": "On certain diophantine equations of diagonal type", "authors": [ "Andrew Bremner", "Maciej Ulas" ], "comment": "16 pages, revised version will appear in the Journal of Number Theory", "categories": [ "math.NT" ], "abstract": "In this note we consider Diophantine equations of the form \\begin{equation*} a(x^p-y^q) = b(z^r-w^s), \\quad \\mbox{where}\\quad \\frac{1}{p}+\\frac{1}{q}+\\frac{1}{r}+\\frac{1}{s}=1, \\end{equation*} with even positive integers $p,q,r,s$. We show that in each case the set of rational points on the underlying surface is dense in the Zariski topology. For the surface with $(p,q,r,s)=(2,6,6,6)$ we prove density of rational points in the Euclidean topology. Moreover, in this case we construct infinitely many parametric solutions in coprime polynomials. The same result is true for $(p,q,r,s)\\in\\{(2,4,8,8), (2,8,4,8)\\}$. In the case $(p,q,r,s)=(4,4,4,4)$, we present some new parametric solutions of the equation $x^4-y^4=4(z^4-w^4)$.", "revisions": [ { "version": "v1", "updated": "2013-11-04T14:52:05.000Z" } ], "analyses": { "subjects": [ "11D57", "11D85" ], "keywords": [ "diophantine equations", "diagonal type", "rational points", "parametric solutions", "zariski topology" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.0717B" } } }