{ "id": "1311.0094", "version": "v1", "published": "2013-11-01T06:06:20.000Z", "updated": "2013-11-01T06:06:20.000Z", "title": "Existence of maximizers for Hardy-Littlewood-Sobolev inequalities on the Heisenberg group", "authors": [ "Xiaolong Han" ], "comment": "To be published in Indiana University Mathematics Journal", "categories": [ "math.CA", "math.OC" ], "abstract": "In this paper, we investigate the sharp Hardy-Littlewood-Sobolev inequalities on the Heisenberg group. On one hand, we apply the concentration compactness principle to prove the existence of the maximizers. While the approach here gives a different proof under the special cases discussed in a recent work of Frank and Lieb, we generalize the result to all admissible cases. On the other hand, we provide the upper bounds of sharp constants for these inequalities.", "revisions": [ { "version": "v1", "updated": "2013-11-01T06:06:20.000Z" } ], "analyses": { "subjects": [ "39B62", "49J45", "35R03" ], "keywords": [ "heisenberg group", "maximizers", "sharp hardy-littlewood-sobolev inequalities", "concentration compactness principle", "upper bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.0094H" } } }