{ "id": "1310.8307", "version": "v5", "published": "2013-10-30T20:06:27.000Z", "updated": "2014-04-02T19:52:19.000Z", "title": "Regularity criteria in weak $L^3$ for 3D incompressible Navier-Stokes equations", "authors": [ "Yuwen Luo", "Tai-Peng Tsai" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "We study the regularity of a distributional solution $(u,p)$ of the 3D incompressible evolution Navier-Stokes equations. Let $B_r$ denote concentric balls in $\\mathbb{R}^3$ with radius $r$. We will show that if $p\\in L^{m} (0,1; L^1(B_2))$, $m>2$, and if $u$ is sufficiently small in $L^{\\infty} (0,1; L^{3,\\infty}(B_2))$, without any assumption on its gradient, then $u$ is bounded in $B_1\\times (\\frac{1}{10},1)$. It is an endpoint case of the usual Serrin-type regularity criteria, and extends the steady-state result of Kim-Kozono to the time dependent setting. In the appendix we also show some nonendpoint borderline regularity criteria.", "revisions": [ { "version": "v5", "updated": "2014-04-02T19:52:19.000Z" } ], "analyses": { "keywords": [ "3d incompressible navier-stokes equations", "nonendpoint borderline regularity criteria", "usual serrin-type regularity criteria", "3d incompressible evolution navier-stokes equations" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.8307L" } } }