{ "id": "1310.8269", "version": "v1", "published": "2013-10-30T19:05:52.000Z", "updated": "2013-10-30T19:05:52.000Z", "title": "Fourier transform of a Bessel function multiplied by a Gaussian", "authors": [ "Michael Carley" ], "comment": "Submitted to Journal of Physics A", "categories": [ "math-ph", "math.MP" ], "abstract": "An analytical result is given for the exact evaluation of an integral which arises in the analysis of acoustic radiation from wave packet sources: $ I_{mn}(\\beta,q) = \\int_{-\\infty}^{\\infty} e^{-\\beta^{2}x^{2}-i q x}x^{m+1/2}J_{n+1/2}(x) \\,d x, $ where $m$ and $n$ are non-negative integers, and $J_{n+1/2}(\\cdot)$ is a Bessel function of order $n+1/2$.", "revisions": [ { "version": "v1", "updated": "2013-10-30T19:05:52.000Z" } ], "analyses": { "keywords": [ "bessel function", "fourier transform", "wave packet sources", "acoustic radiation", "exact evaluation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.8269C" } } }