{ "id": "1310.7302", "version": "v2", "published": "2013-10-28T03:33:47.000Z", "updated": "2015-09-27T02:27:17.000Z", "title": "Maximum Orders of Cyclic and Abelian Extendable Actions on Surfaces", "authors": [ "Chao Wang", "Yimu Zhang" ], "comment": "22pages, 10 figures", "categories": [ "math.GT" ], "abstract": "Let $\\Sigma_g (g>1)$ be a closed surface embedded in $S^3$. If a group $G$ can acts on the pair $(S^3, \\Sigma_g)$, then we call such a group action on $\\Sigma_g$ extendable over $S^3$. In this paper we show that the maximum order of extendable cyclic group actions is $4g+4$ when $g$ is even and $4g-4$ when $g$ is odd; the maximum order of extendable abelian group actions is $4g+4$. We also give results of similar questions about extendable group actions over handlebodies.", "revisions": [ { "version": "v1", "updated": "2013-10-28T03:33:47.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-09-27T02:27:17.000Z" } ], "analyses": { "subjects": [ "57M60", "57S17", "57S25" ], "keywords": [ "maximum order", "abelian extendable actions", "extendable cyclic group actions", "extendable abelian group actions", "similar questions" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.7302W" } } }