{ "id": "1310.7273", "version": "v2", "published": "2013-10-27T23:23:39.000Z", "updated": "2014-03-19T05:33:51.000Z", "title": "Symmetry Groups of $A_n$ Hypergeometric Series", "authors": [ "Yasushi Kajihara" ], "journal": "SIGMA 10 (2014), 026, 29 pages", "doi": "10.3842/SIGMA.2014.026", "categories": [ "math.CA", "math.CO", "math.GR" ], "abstract": "Structures of symmetries of transformations for Holman-Biedenharn-Louck $A_n$ hypergeometric series: $A_n$ terminating balanced ${}_4 F_3$ series and $A_n$ elliptic ${}_{10} E_9$ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of $A_n$ hypergeometric series are given. Among them, a \"periodic\" affine Coxeter group which seems to be new in the literature arises as an invariance group for a class of $A_n$ ${}_4 F_3$ series.", "revisions": [ { "version": "v2", "updated": "2014-03-19T05:33:51.000Z" } ], "analyses": { "keywords": [ "hypergeometric series", "symmetry groups", "invariance group", "affine coxeter group", "transformations" ], "tags": [ "journal article" ], "publication": { "journal": "SIGMA", "year": 2014, "month": "Mar", "volume": 10, "pages": "026" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014SIGMA..10..026K" } } }