{ "id": "1310.6903", "version": "v1", "published": "2013-10-25T13:13:34.000Z", "updated": "2013-10-25T13:13:34.000Z", "title": "Positivstellensätze for Quantum Multigraphs", "authors": [ "Tim Netzer", "Andreas Thom" ], "categories": [ "math.AG", "math.CO" ], "abstract": "Studying inequalities between subgraph- or homomorphism-densities is an important topic in graph theory. Sums of squares techniques have proven useful in dealing with such questions. Using an approach from real algebraic geometry, we strengthen a Positivstellensatz for simple quantum graphs by Lov\\'asz and Szegedy, and we prove several new Positivstellens\\\"atze for nonnegativity of quantum multigraphs. We provide new examples and counterexamples.", "revisions": [ { "version": "v1", "updated": "2013-10-25T13:13:34.000Z" } ], "analyses": { "keywords": [ "quantum multigraphs", "positivstellensätze", "real algebraic geometry", "simple quantum graphs", "graph theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.6903N" } } }