{ "id": "1310.6852", "version": "v1", "published": "2013-10-25T08:48:54.000Z", "updated": "2013-10-25T08:48:54.000Z", "title": "Some aspects of harmonic analysis related to Gegenbauer expansions on the half-line", "authors": [ "Vagif S. Guliyev", "Elman J. Ibrahimov" ], "comment": "44 pages", "categories": [ "math.FA" ], "abstract": "In this paper we consider the generalized shift operator, generated by the Gegenbauer differential operator $$ G =\\left(x^2-1\\right)^{\\frac{1}{2}-\\lambda} \\frac{d}{dx} \\left(x^2-1\\right)^{\\lambda+\\frac{1}{2}}\\frac{d}{dx}. $$ Maximal function ($ G- $ maximal function), generated by the Gegenbauer differential operator $ G $ is investigated. The $ L_{p,\\lambda} $ -boundedness for the $ G- $ maximal function is obtained. The concept of potential of Riesz-Gegenbauer is introduced and for it the theorem of Sobolev type is proved.", "revisions": [ { "version": "v1", "updated": "2013-10-25T08:48:54.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25", "42B35" ], "keywords": [ "harmonic analysis", "gegenbauer expansions", "maximal function", "gegenbauer differential operator", "generalized shift operator" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.6852G" } } }