{ "id": "1310.6607", "version": "v1", "published": "2013-10-24T13:24:32.000Z", "updated": "2013-10-24T13:24:32.000Z", "title": "The 4-class group of real quadratic number fields", "authors": [ "Franz Lemmermeyer" ], "comment": "unpublished", "categories": [ "math.NT" ], "abstract": "In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire's result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank at least $4$, using a technique due to F. Hajir.", "revisions": [ { "version": "v1", "updated": "2013-10-24T13:24:32.000Z" } ], "analyses": { "subjects": [ "11R37" ], "keywords": [ "real quadratic number fields", "ideal class group", "maires result", "field tower", "elementary proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.6607L" } } }