{ "id": "1310.6302", "version": "v1", "published": "2013-10-23T17:30:21.000Z", "updated": "2013-10-23T17:30:21.000Z", "title": "Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy", "authors": [ "M. Burak Erdogan", "Michael Goldberg", "William R. Green" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "We investigate $L^1(\\mathbb R^4)\\to L^\\infty(\\mathbb R^4)$ dispersive estimates for the Schr\\\"odinger operator $H=-\\Delta+V$ when there are obstructions, a resonance or an eigenvalue, at zero energy. In particular, we show that if there is a resonance or an eigenvalue at zero energy then there is a time dependent, finite rank operator $F_t$ satisfying $\\|F_t\\|_{L^1\\to L^\\infty} \\lesssim 1/\\log t$ for $t>2$ such that $$\\|e^{itH}P_{ac}-F_t\\|_{L^1\\to L^\\infty} \\lesssim t^{-1},\\,\\,\\,\\,\\,\\text{for} t>2.$$ We also show that the operator $F_t=0$ if there is an eigenvalue but no resonance at zero energy. We then develop analogous dispersive estimates for the solution operator to the four dimensional wave equation with potential.", "revisions": [ { "version": "v1", "updated": "2013-10-23T17:30:21.000Z" } ], "analyses": { "keywords": [ "zero energy", "dimensional schrödinger", "obstructions", "eigenvalue", "dimensional wave equation" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.6302B" } } }