{ "id": "1310.6158", "version": "v3", "published": "2013-10-23T08:59:23.000Z", "updated": "2015-04-01T14:27:17.000Z", "title": "Cubic polynomials represented by norm forms", "authors": [ "A. J. Irving" ], "comment": "40 pages, V2 contains some Minor corrections, V3 includes the bibliography which was missing in V2", "categories": [ "math.NT" ], "abstract": "We show that for an irreducible cubic $f\\in\\mathbb Z[x]$ and a full norm form $\\mathbf N(x_1,\\ldots,x_k)$ for a number field $K/\\mathbb Q$ satisfying certain hypotheses the variety $f(t)=\\mathbf N(x_1,\\ldots,x_k)\\ne 0$ satisfies the Hasse principle. Our proof uses sieve methods.", "revisions": [ { "version": "v2", "updated": "2014-04-30T09:05:57.000Z", "comment": "40 pages, V2 contains some Minor corrections", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-04-01T14:27:17.000Z" } ], "analyses": { "subjects": [ "14G05", "11D57", "11N36" ], "keywords": [ "cubic polynomials", "full norm form", "number field", "hasse principle", "sieve methods" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.6158I" } } }