{ "id": "1310.5636", "version": "v1", "published": "2013-10-21T16:42:46.000Z", "updated": "2013-10-21T16:42:46.000Z", "title": "On the Structure of the Solution Set of a Sign Changing Perturbation of the p-Laplacian under Dirichlet Boundary Condition", "authors": [ "J. V. Goncalves", "M. R. Marcial" ], "comment": "23 pages", "categories": [ "math.AP" ], "abstract": "In a recent paper D. D. Hai showed that the equation $ -\\Delta_{p} u = \\lambda f(u) \\mbox{in} \\Omega$, under Dirichlet boundary condition, where $\\Omega \\subset {\\bf R^N}$ is a bounded domain with smooth boundary $\\partial\\Omega$, $\\Delta_{p}$ is the p-Laplacian, $f : (0,\\infty) \\rightarrow {\\bf R} $ is a continuous function which may blow up to $\\pm \\infty$ at the origin, admits a solution if $\\lambda > \\lambda_0$ and has no solution if $0 < \\lambda < \\lambda_0$. In this paper we show that the solution set $\\mathcal{S}$ of the equation above, which is not empty by Hai's results, actually admits a continuum of positive solutions.", "revisions": [ { "version": "v1", "updated": "2013-10-21T16:42:46.000Z" } ], "analyses": { "subjects": [ "35J25", "35J55", "35J70" ], "keywords": [ "dirichlet boundary condition", "sign changing perturbation", "solution set", "p-laplacian", "hais results" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.5636G" } } }