{ "id": "1310.5634", "version": "v2", "published": "2013-10-21T16:37:21.000Z", "updated": "2014-07-31T12:10:42.000Z", "title": "Upper bounds on the number of perfect matchings and directed 2-factors in graphs with given number of vertices and edges", "authors": [ "M. Aaghabali", "S. Akbari", "S. Friedland", "K. Markstrom", "Z. Tajfirouz" ], "comment": "17 pages, 2 tables, 5 figures", "categories": [ "math.CO" ], "abstract": "We give an upper bound on the number of perfect matchings in simple graphs with a given number of vertices and edges. We apply this result to give an upper bound on the number of 2-factors in a directed complete bipartite balanced graph on 2n vertices. The upper bound is sharp for n even. For n odd we state a conjecture on a sharp upper bound.", "revisions": [ { "version": "v2", "updated": "2014-07-31T12:10:42.000Z" } ], "analyses": { "subjects": [ "05A20", "05C20", "05C70" ], "keywords": [ "perfect matchings", "directed complete bipartite balanced graph", "sharp upper bound", "simple graphs", "2n vertices" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.5634A" } } }