{ "id": "1310.5219", "version": "v1", "published": "2013-10-19T12:05:00.000Z", "updated": "2013-10-19T12:05:00.000Z", "title": "Semi-equivelar maps on the surface of Euler characteristic -1", "authors": [ "Ashish K Upadhyay", "Anand K Tiwari" ], "comment": "39 pages, 3 figures", "categories": [ "math.GT", "math.AT", "math.CO" ], "abstract": "Semi-Equivelar maps are generalizations of Archimedean solids to the surfaces other than 2-sphere. In earlier work a complete classification of semi-equivelar map of type $(3^5, 4)$ on the surface of Euler characteristic -1 was given. In the meantime Karabas an Nedela classified vertex transitive semi-equivelar maps on the double torus. In this article we study the types of semi-equivelar maps on double torus that are also available on the surface of Euler characteristic -1. We classify them and show that none of them are vertex transitive.", "revisions": [ { "version": "v1", "updated": "2013-10-19T12:05:00.000Z" } ], "analyses": { "subjects": [ "52B70", "52C20" ], "keywords": [ "euler characteristic", "double torus", "classified vertex transitive semi-equivelar maps", "nedela classified vertex transitive semi-equivelar", "meantime karabas" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.5219U" } } }