{ "id": "1310.5083", "version": "v1", "published": "2013-10-18T16:35:45.000Z", "updated": "2013-10-18T16:35:45.000Z", "title": "Mean ergodic properties of the continuous Cesàro operators", "authors": [ "Angela A. Albanese", "José Bonet", "Werner J. Ricker" ], "comment": "19 pages", "categories": [ "math.FA" ], "abstract": "Various properties of the (continuous) Ces\\`aro operator $\\mathsf{C}$, acting on Banach and Fr\\'echet spaces of continuous functions and $L^p$-spaces, are investigated. For instance, the spectrum and point spectrum of $\\mathsf{C}$ are completely determined and a study of certain dynamics of $\\mathsf{C}$ is undertaken (eg. hyper- and supercyclicity, chaotic behaviour). In addition, the mean (and uniform mean) ergodic nature of $\\mathsf{C}$ acting in the various spaces is identified.", "revisions": [ { "version": "v1", "updated": "2013-10-18T16:35:45.000Z" } ], "analyses": { "subjects": [ "47A10", "47A16", "47A35", "46A04", "47B34", "47B38" ], "keywords": [ "mean ergodic properties", "continuous cesàro operators", "frechet spaces", "point spectrum", "chaotic behaviour" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.5083A" } } }