{ "id": "1310.4685", "version": "v2", "published": "2013-10-17T13:01:21.000Z", "updated": "2014-06-13T19:18:38.000Z", "title": "Asymptotic of the terms of the Gegenbauer polynomial on the unit circle and applications to the inverse of Toeplitz matrices", "authors": [ "Philippe Rambour" ], "categories": [ "math.CA" ], "abstract": "The first part of this paper is devoted to the study of the orthogonal polynomial on the circle, with respect of a weight of type $f_\\alpha (\\theta) = (2\\cos \\theta- 2\\cos \\theta_0)^{2\\alpha} c_1$ with $\\theta_0 \\in ]0,\\pi[$, -1/2 <\\alpha<1/2 and c_1 a sufficiently smooth function. In a second part of the paper we obtain an asymptotic of the entries $(T_N f_\\alpha)^{-1}_{k+1,l+1}$ for sufficiently large values of $k,l$, that provides a lower bound on the eigenvalues of this matrix.", "revisions": [ { "version": "v2", "updated": "2014-06-13T19:18:38.000Z" } ], "analyses": { "keywords": [ "gegenbauer polynomial", "toeplitz matrices", "unit circle", "asymptotic", "applications" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.4685R" } } }