{ "id": "1310.4467", "version": "v1", "published": "2013-10-16T18:08:40.000Z", "updated": "2013-10-16T18:08:40.000Z", "title": "Affine Cellularity of Khovanov-Lauda-Rouquier Algebras of Finite Types", "authors": [ "Alexander Kleshchev", "Joseph Loubert" ], "categories": [ "math.RT" ], "abstract": "We prove that the Khovanov-Lauda-Rouquier algebras $R_\\alpha$ of finite type are (graded) affine cellular in the sense of Koenig and Xi. In fact, we establish a stronger property, namely that the affine cell ideals in $R_\\alpha$ are generated by idempotents. This in particular implies the (known) result that the global dimension of $R_\\alpha$ is finite.", "revisions": [ { "version": "v1", "updated": "2013-10-16T18:08:40.000Z" } ], "analyses": { "keywords": [ "khovanov-lauda-rouquier algebras", "finite type", "affine cellularity", "affine cell ideals", "stronger property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.4467K" } } }