{ "id": "1310.4337", "version": "v2", "published": "2013-10-16T11:48:39.000Z", "updated": "2013-10-17T03:00:38.000Z", "title": "Hadwiger's conjecture for 3-arc graphs", "authors": [ "David R. Wood", "Guangjun Xu", "Sanming Zhou" ], "categories": [ "math.CO" ], "abstract": "The 3-arc graph of a digraph $D$ is defined to have vertices the arcs of $D$ such that two arcs $uv, xy$ are adjacent if and only if $uv$ and $xy$ are distinct arcs of $D$ with $v\\ne x$, $y\\ne u$ and $u,x$ adjacent. We prove that Hadwiger's conjecture holds for 3-arc graphs.", "revisions": [ { "version": "v2", "updated": "2013-10-17T03:00:38.000Z" } ], "analyses": { "keywords": [ "hadwigers conjecture holds", "distinct arcs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.4337W" } } }