{ "id": "1310.4257", "version": "v5", "published": "2013-10-16T03:43:01.000Z", "updated": "2015-08-07T12:07:31.000Z", "title": "The (S,{2})-Iwasawa theory", "authors": [ "Su Hu", "Min-Soo Kim" ], "comment": "15 Pages", "categories": [ "math.NT" ], "abstract": "Iwasawa made the fundamental discovery that there is a close connection between the ideal class groups of $\\mathbb{Z}_{p}$-extensions of cyclotomic fields and the $p$-adic analogue of Riemann's zeta functions $$\\zeta(s)=\\sum_{n=1}^{\\infty}\\frac{1}{n^{s}}.$$ In this paper, we show that there may also exist a parallel Iwasawa's theory corresponding to the $p$-adic analogue of Euler's deformation of zeta functions $$\\phi(s)=\\sum_{n=1}^{\\infty}\\frac{(-1)^{n-1}}{n^{s}}.$$", "revisions": [ { "version": "v4", "updated": "2014-07-30T03:44:51.000Z", "comment": "11 Pages", "journal": null, "doi": null }, { "version": "v5", "updated": "2015-08-07T12:07:31.000Z" } ], "analyses": { "subjects": [ "11R23", "11S40", "11S80" ], "keywords": [ "adic analogue", "ideal class groups", "riemanns zeta functions", "close connection", "eulers deformation" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.4257H" } } }