{ "id": "1310.3030", "version": "v1", "published": "2013-10-11T06:36:50.000Z", "updated": "2013-10-11T06:36:50.000Z", "title": "Cocycle invariants of codimension 2-embeddings of manifolds", "authors": [ "Jozef H. Przytycki", "Witold Rosicki" ], "comment": "47 pages, 22 figures, Proceedings of Knots in Poland III, 2010", "categories": [ "math.GT" ], "abstract": "We consider the classical problem of a position of n-dimensional manifold M in R^{n+2}. We show that we can define the fundamental (n+1)-cycle and the shadow fundamental (n+2)-cycle for a fundamental quandle of a knotting M to R^{n+2}. In particular, we show that for any fixed quandle, quandle coloring, and shadow quandle coloring, of a diagram of M embedded in R^{n+2} we have (n+1)- and (n+2)-(co)cycle invariants (i.e. invariant under Roseman moves). We speculate on a similar construction for general Yang-Baxter operators.", "revisions": [ { "version": "v1", "updated": "2013-10-11T06:36:50.000Z" } ], "analyses": { "subjects": [ "57Q45", "57M25" ], "keywords": [ "cocycle invariants", "codimension", "general yang-baxter operators", "roseman moves", "shadow fundamental" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.3030P" } } }