{ "id": "1310.2585", "version": "v4", "published": "2013-10-09T19:01:33.000Z", "updated": "2014-01-21T23:03:48.000Z", "title": "The Local Langlands Correspondence for Simple Supercuspidal Representations of GL_n(F)", "authors": [ "Moshe Adrian", "Baiying Liu" ], "comment": "35 pages. Minor changes to introduction", "categories": [ "math.RT", "math.NT" ], "abstract": "Let F be a non-archimedean local field of characteristic zero with residual characteristic p. In this paper, we present a simple proof and construction of the local Langlands correspondence for simple supercuspidal representations of GL_n(F), when p does not divide n. As an application, we prove Jacquet's conjecture on the local converse problem for GL_n(F) in the case of simple supercuspidal representations, for arbitrary p.", "revisions": [ { "version": "v4", "updated": "2014-01-21T23:03:48.000Z" } ], "analyses": { "subjects": [ "11S37", "22E50" ], "keywords": [ "simple supercuspidal representations", "local langlands correspondence", "non-archimedean local field", "local converse problem", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.2585A" } } }