{ "id": "1310.2571", "version": "v1", "published": "2013-10-09T18:32:54.000Z", "updated": "2013-10-09T18:32:54.000Z", "title": "An Erdős-Ko-Rado theorem for the derangement graph of PGL(3,q) acting on the projective plane", "authors": [ "Karen Meagher", "Pablo Spiga" ], "comment": "19 pages", "categories": [ "math.CO", "math.GR" ], "abstract": "In this paper we prove an Erd\\H{o}s-Ko-Rado-type theorem for intersecting sets of permutations. We show that an intersecting set of maximal size in the projective general linear group PGL(3,q), in its natural action on the points of the projective line, is either a coset of the stabilizer of a point or a coset of the stabilizer of a line.", "revisions": [ { "version": "v1", "updated": "2013-10-09T18:32:54.000Z" } ], "analyses": { "subjects": [ "05C35", "05C69", "20B05" ], "keywords": [ "erdős-ko-rado theorem", "derangement graph", "projective plane", "projective general linear group pgl", "intersecting set" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.2571M" } } }