{ "id": "1310.2262", "version": "v1", "published": "2013-10-08T20:12:44.000Z", "updated": "2013-10-08T20:12:44.000Z", "title": "A characterization of Hardy spaces associated with certain Schrödinger operators", "authors": [ "Jacek Dziubański", "Jacek Zienkiewicz" ], "categories": [ "math.FA" ], "abstract": "Let $\\{K_t\\}_{t>0}$ be the semigroup of linear operators generated by a Schr\\\"odinger operator $-L=\\Delta - V(x)$ on $\\mathbb R^d$, $d\\geq 3$, where $V(x)\\geq 0$ satisfies $\\Delta^{-1} V\\in L^\\infty$. We say that an $L^1$-function $f$ belongs to the Hardy space $H^1_L$ if the maximal function $\\mathcal M_L f(x) = \\sup_{t>0} |K_tf(x)|$ belongs to $L^1(\\mathbb R^d) $. We prove that the operator $(-\\Delta)^{1\\slash 2} L^{-1\\slash 2}$ is an isomorphism of the space $H^1_L$ with the classical Hardy space $H^1(\\mathbb R^d)$ whose inverse is $L^{1\\slash 2} (-\\Delta)^{-1\\slash 2}$. As a corollary we obtain that the space $H^1_L$ is characterized by the Riesz transforms $R_j=\\frac{\\partial}{\\partial x_j}L^{-1\\slash 2}$.", "revisions": [ { "version": "v1", "updated": "2013-10-08T20:12:44.000Z" } ], "analyses": { "subjects": [ "42B30", "35J10", "42B35" ], "keywords": [ "hardy spaces", "schrödinger operators", "characterization", "maximal function", "riesz transforms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.2262D" } } }