{ "id": "1310.1631", "version": "v5", "published": "2013-10-06T21:12:59.000Z", "updated": "2015-01-15T09:02:55.000Z", "title": "Remarks on low-energy approximations for Feynman path integration on the sphere", "authors": [ "Yoshihisa Miyanishi" ], "comment": "14 pages. Comments appreciated", "categories": [ "math-ph", "math.MP" ], "abstract": "We shall define the oscillatory integrals by action integrals, Van Vleck determinant and Dewitt curvature. Our method employs action integrals along the shortest paths. We have the strong but not uniform convergence of time slicing Feynman path integrals for low energy functions.", "revisions": [ { "version": "v4", "updated": "2013-10-16T23:17:08.000Z", "abstract": "Feynman path integral for the sphere is developed. Our method employs action integrals along shortest paths. We shall define the operator by Van Vleck determinant and Dewitt curvature. By using the method of low energy approximations, we have the strong but not uniform convergence of Feynman path integrals. This is a rigorous example of Feynman path integrals for compact Riemannian manifolds", "comment": "13 pages. Comments appreciated", "journal": null, "doi": null }, { "version": "v5", "updated": "2015-01-15T09:02:55.000Z" } ], "analyses": { "keywords": [ "feynman path integration", "feynman path integral", "low-energy approximations", "method employs action integrals", "low energy approximations" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.1631M" } } }