{ "id": "1310.1247", "version": "v2", "published": "2013-10-04T12:57:32.000Z", "updated": "2014-03-15T16:07:15.000Z", "title": "Law of large numbers for critical first-passage percolation on the triangular lattice", "authors": [ "Chang-Long Yao" ], "comment": "14 pages, 2 figures", "journal": "Electronic Communications in Probability 19 (2014) 1--14", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We study the site version of (independent) first-passage percolation on the triangular lattice $\\mathbb{T}$. Denote the passage time of the site $v$ in $\\mathbb{T}$ by $t(v)$, and assume that $P(t(v)=0)=P(t(v)=1)=1/2$. Denote by $a_{0,n}$ the passage time from $\\textbf{0}$ to $(n,0)$, and by $b_{0,n}$ the passage time from $\\textbf{0}$ to the halfplane $\\{(x,y):x\\geq n\\}$. We prove that there exists a constant $0<\\mu<\\infty$ such that as $n\\rightarrow\\infty$, $a_{0,n}/\\log n\\rightarrow \\mu$ in probability and $b_{0,n}/\\log n\\rightarrow \\mu/2$ almost surely. This result confirms a prediction of Kesten and Zhang (Probab. Theory Relat. Fields \\textbf{107}: 137--160, 1997). The proof relies on the existence of the full scaling limit of critical site percolation on $\\mathbb{T}$, established by Camia and Newman.", "revisions": [ { "version": "v2", "updated": "2014-03-15T16:07:15.000Z" } ], "analyses": { "keywords": [ "critical first-passage percolation", "triangular lattice", "large numbers", "passage time", "site version" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.1247Y" } } }