{ "id": "1310.1045", "version": "v3", "published": "2013-10-03T18:09:03.000Z", "updated": "2014-08-14T00:51:36.000Z", "title": "The divergence of the barycentric Pade approximants", "authors": [ "Walter F. Mascarenhas" ], "comment": "Introducted a new section describing informally the proof of the main theorem", "categories": [ "math.NA" ], "abstract": "We explain that, like the usual Pad\\'e approximants, the barycentric Pad\\'e approximants proposed recently by Brezinski and Redivo-Zaglia can diverge. More precisely, we show that for every polynomial P there exists a power series S, with arbitrarily small coefficients, such that the sequence of barycentric Pad\\'e approximants of P + S do not converge uniformly in any subset of the complex plane with a non-empty interior.", "revisions": [ { "version": "v3", "updated": "2014-08-14T00:51:36.000Z" } ], "analyses": { "keywords": [ "barycentric pade approximants", "divergence", "usual pade approximants", "complex plane", "power series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.1045M" } } }