{ "id": "1310.0851", "version": "v2", "published": "2013-10-02T21:55:05.000Z", "updated": "2014-04-04T01:49:47.000Z", "title": "A generalization of Aztec diamond theorem, part I", "authors": [ "Tri Lai" ], "comment": "18 pages", "categories": [ "math.CO" ], "abstract": "We generalize Aztec diamond theorem (N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating-sign matrices and domino tilings, Journal Algebraic Combinatoric, 1992) by showing that the numbers of tilings of a certain family of regions in the square lattice with southwest-to-northeast diagonals drawn in are given by powers of 2. We present a proof for the generalization by using a bijection between domino tilings and non-intersecting lattice paths.", "revisions": [ { "version": "v2", "updated": "2014-04-04T01:49:47.000Z" } ], "analyses": { "subjects": [ "05A15", "05E99" ], "keywords": [ "generalization", "domino tilings", "southwest-to-northeast diagonals drawn", "generalize aztec diamond theorem", "journal algebraic combinatoric" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.0851L" } } }