{ "id": "1310.0774", "version": "v5", "published": "2013-10-02T17:18:47.000Z", "updated": "2015-05-29T11:08:32.000Z", "title": "Tonoli's Calabi--Yau threefolds revisited", "authors": [ "Grzegorz Kapustka", "Michal Kapustka" ], "comment": "title changed, paper reorganized; 18 pages", "categories": [ "math.AG" ], "abstract": "We find a simple geometric construction of Tonoli's examples of Calabi--Yau threefolds of degree 17 in complex $\\mathbb{P}^6$. We prove that the rank of the Picard group of elements of one of these families is at least $2$.", "revisions": [ { "version": "v4", "updated": "2014-06-24T19:46:09.000Z", "title": "Del Pezzo surfaces in $\\mathbb{P}^5$ and Calabi--Yau threefolds in $\\mathbb{P}^6$", "abstract": "We find a simple geometric construction of Tonoli examples of Calabi--Yau threefolds of degree 17 in complex $\\mathbb{P}^6$. We then observe and investigate an analogy between the descriptions in terms of Pfaffians of vector bundles of anti-canonically embedded del Pezzo surfaces in $\\mathbb{P}^5$ and of known Calabi--Yau threefolds in $\\mathbb{P}^6$.", "comment": "minor changes", "journal": null, "doi": null }, { "version": "v5", "updated": "2015-05-29T11:08:32.000Z" } ], "analyses": { "subjects": [ "14J32" ], "keywords": [ "calabi-yau threefolds", "anti-canonically embedded del pezzo surfaces", "simple geometric construction", "vector bundles", "tonoli examples" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.0774K" } } }