{ "id": "1310.0490", "version": "v1", "published": "2013-10-01T21:03:52.000Z", "updated": "2013-10-01T21:03:52.000Z", "title": "Semiclassical theory of speckle correlations", "authors": [ "Maxim Breitkreiz", "Piet W. Brouwer" ], "comment": "13 pages, 7 figures", "journal": "Phys. Ref. E 88, 062905 (2013)", "doi": "10.1103/PhysRevE.88.062905", "categories": [ "cond-mat.mes-hall" ], "abstract": "Coherent wave propagation in random media results in a characteristic speckle pattern, with spatial intensity correlations with short-range and long-range behavior. Here, we show how the speckle correlation function can be obtained from a ray picture for two representative geometries: A chaotic cavity and a random waveguide. Our calculation allows us to study the crossover between a \"ray limit\" and a \"wave limit\", in which the Ehrenfest time $\\tau_E$ is larger or smaller than the typical transmission time $\\tau_D$, respectively. Remarkably, long-range speckle correlations persist in the ray limit $\\tau_E \\gg \\tau_D$.", "revisions": [ { "version": "v1", "updated": "2013-10-01T21:03:52.000Z" } ], "analyses": { "subjects": [ "05.45.Mt", "05.40.-a", "42.25.Bs", "42.25.Fx" ], "keywords": [ "semiclassical theory", "long-range speckle correlations persist", "ray limit", "speckle correlation function", "spatial intensity correlations" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review E", "year": 2013, "month": "Dec", "volume": 88, "number": 6, "pages": "062905" }, "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013PhRvE..88f2905B" } } }