{ "id": "1310.0353", "version": "v2", "published": "2013-10-01T15:42:45.000Z", "updated": "2013-10-07T13:00:21.000Z", "title": "Inequalities for binomial coefficients", "authors": [ "Zhi-Hong Sun" ], "comment": "10 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "In this paper we prove several inequalities for binomial coefficients. For instance, if $ k$ and $n$ are positive integers such that $n\\ge 400$ and $[\\frac n5]\\le k\\le [\\frac n2]$, where $[x]$ is the greatest integer not exceeding $x$, then $$\\binom nk<\\Big(1-\\frac{5(k-[\\f n5])}{6n^2}\\Big) \\frac{n^{n-\\f 12}}{k^k(n-k)^{n-k}}.$$", "revisions": [ { "version": "v2", "updated": "2013-10-07T13:00:21.000Z" } ], "analyses": { "subjects": [ "05A20", "11B65", "33B15" ], "keywords": [ "binomial coefficients", "inequalities" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.0353S" } } }