{ "id": "1310.0103", "version": "v2", "published": "2013-10-01T00:18:55.000Z", "updated": "2016-01-27T03:19:13.000Z", "title": "A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs", "authors": [ "Huanchen Bao", "Weiqiang Wang" ], "comment": "v2, 92 pages, References and Notes added, introduction modified, i-canonical bases for based U-modules and positivity of i-KL polynomials added, other minor corrections", "categories": [ "math.RT", "math.QA" ], "abstract": "We show that Hecke algebra of type B and a coideal subalgebra of the type A quantum group satisfy a double centralizer property, generalizing the Schur-Jimbo duality in type A. The quantum group of type A and its coideal subalgebra form a quantum symmetric pair. A new theory of canonical bases arising from quantum symmetric pairs is initiated. It is then applied to formulate and establish for the first time a Kazhdan-Lusztig theory for the BGG category O of the ortho-symplectic Lie superalgebras $\\mathfrak{osp}(2m+1|2n)$. In particular, our approach provides a new formulation of the Kazhdan-Lusztig theory for Lie algebras of type B/C.", "revisions": [ { "version": "v1", "updated": "2013-10-01T00:18:55.000Z", "abstract": "We show that Hecke algebra of type B and a coideal subalgebra of the type A quantum group satisfy a double centralizer property, generalizing the Schur-Jimbo duality in type A. The quantum group of type A and its coideal subalgebra form a quantum symmetric pair. We offer a new approach to the Kazhdan-Lusztig theory for the BGG category O for Lie algebras of type B/C by developing a new theory of canonical basis arising from quantum symmetric pairs. This is then applied to formulate and establish for the first time a Kazhdan-Lusztig theory for the category O of the ortho-symplectic Lie superalgebra osp(2m+1|2n).", "comment": "89 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2016-01-27T03:19:13.000Z" } ], "analyses": { "keywords": [ "quantum symmetric pair", "kazhdan-lusztig theory", "coideal subalgebra form", "ortho-symplectic lie superalgebras", "quantum group satisfy" ], "note": { "typesetting": "TeX", "pages": 92, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.0103B" } } }