{ "id": "1309.7745", "version": "v1", "published": "2013-09-30T07:49:27.000Z", "updated": "2013-09-30T07:49:27.000Z", "title": "On the range of $\\sum_{n=1}^\\infty\\pm c_n$", "authors": [ "Xinggang He", "Chuntai Liu" ], "comment": "15 pages", "categories": [ "math.FA" ], "abstract": "Let $\\{c_n\\}_{n=1}^\\infty$ be a sequence of complex numbers. In this paper we answer when the range of $\\sum_{n=1}^\\infty\\pm c_n$ is dense or equal to the complex plane. Some examples are given to explain our results. As its application, we calculate the Hausdorff dimension of the level sets of a Rademacher series with complex coefficients.", "revisions": [ { "version": "v1", "updated": "2013-09-30T07:49:27.000Z" } ], "analyses": { "keywords": [ "complex numbers", "complex plane", "hausdorff dimension", "level sets", "rademacher series" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.7745H" } } }