{ "id": "1309.7537", "version": "v1", "published": "2013-09-29T05:12:57.000Z", "updated": "2013-09-29T05:12:57.000Z", "title": "A variety of Euler's conjecture", "authors": [ "Tianxin Cai", "Yong Zhang" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "We consider a variety of Euler's conjecture, i.e., whether the Diophantine system \\[\\begin{cases} n=a_{1}+a_{2}+\\cdots+a_{s-1}, a_{1}a_{2}\\cdots a_{s-1}(a_{1}+a_{2}+\\cdots+a_{s-1})=b^{s} \\end{cases}\\] has solutions $n,b,a_i\\in\\mathbb{Z}^+,i=1,2,\\ldots,s-1,s\\geq 3.$ By using the theory of elliptic curves, we prove that it has no solutions $n,b,a_i\\in\\mathbb{Z}^+$ for $s=3$, but for $s=4$ it has infinitely many solutions $n,b,a_i\\in\\mathbb{Z}^+$ and for $s\\geq 5$ there are infinitely many polynomial solutions $n,b,a_i\\in\\mathbb{Z}[t_1,t_2,\\ldots,t_{s-3}]$ with positive value satisfying this Diophantine system.", "revisions": [ { "version": "v1", "updated": "2013-09-29T05:12:57.000Z" } ], "analyses": { "subjects": [ "11D72", "11D41", "11G05" ], "keywords": [ "eulers conjecture", "diophantine system", "elliptic curves", "polynomial solutions" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.7537C" } } }