{ "id": "1309.7467", "version": "v2", "published": "2013-09-28T15:22:56.000Z", "updated": "2013-11-12T16:19:53.000Z", "title": "Cuspidal part of an Eisenstein series restricted to an index 2 subfield", "authors": [ "Yueke Hu" ], "comment": "Thesis", "categories": [ "math.NT" ], "abstract": "Let $\\mathbb{E}$ be a quadratic extension of a number field $\\mathbb{F}$. Let $E(g, s)$ be an Eisenstein series on $GL_2(\\mathbb{E})$, and let $F$ be a cuspidal automorphic form on $GL_2(\\mathbb{F})$. We will consider in this paper the following automorphic integral: $$\\int_{Z_{A}GL_{2}(\\mathbb{F})\\backslash GL_{2}(\\mathbb{A}_{\\mathbb{F}})} F(g)E(g,s) dg.$$ This is in some sense the complementary case to the well-known Rankin-Selberg integral and the triple product formula. We will approach this integral by Waldspurger's formula. We will discuss when the integral is automatically zero, and otherwise the L-function it represents. We will calculate local integrals at some ramified places, where the level of the ramification can be arbitrarily large.", "revisions": [ { "version": "v2", "updated": "2013-11-12T16:19:53.000Z" } ], "analyses": { "keywords": [ "eisenstein series", "cuspidal part", "cuspidal automorphic form", "triple product formula", "well-known rankin-selberg integral" ], "tags": [ "dissertation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.7467H" } } }