{ "id": "1309.6686", "version": "v1", "published": "2013-09-25T22:36:09.000Z", "updated": "2013-09-25T22:36:09.000Z", "title": "Packing Posets in the Boolean Lattice", "authors": [ "Andrew P. Dove", "Jerrold R. Griggs" ], "categories": [ "math.CO" ], "abstract": "We are interested in maximizing the number of pairwise unrelated copies of a poset $P$ in the family of all subsets of $[n]$. We prove that for any $P$ the maximum number of unrelated copies of $P$ is asymptotic to a constant times the largest binomial coefficient. Moreover, the constant has the form $\\frac{1}{c(P)}$, where $c(P)$ is the size of the smallest convex closure over all embeddings of $P$ into the Boolean lattice.", "revisions": [ { "version": "v1", "updated": "2013-09-25T22:36:09.000Z" } ], "analyses": { "keywords": [ "boolean lattice", "packing posets", "unrelated copies", "smallest convex closure", "largest binomial coefficient" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.6686D" } } }