{ "id": "1309.6429", "version": "v1", "published": "2013-09-25T08:48:06.000Z", "updated": "2013-09-25T08:48:06.000Z", "title": "Weak Convergence to Stable Lévy Processes for Nonuniformly Hyperbolic Dynamical Systems", "authors": [ "Ian Melbourne", "Roland Zweimüller" ], "comment": "Accepted for publication in Ann. Inst. H. Poincar\\'e (B) Probab. Statist", "categories": [ "math.DS" ], "abstract": "We consider weak invariance principles (functional limit theorems) in the domain of a stable law. A general result is obtained on lifting such limit laws from an induced dynamical system to the original system. An important class of examples covered by our result are Pomeau-Manneville intermittency maps, where convergence for the induced system is in the standard Skorohod J_1 topology. For the full system, convergence in the J_1 topology fails, but we prove convergence in the M_1 topology.", "revisions": [ { "version": "v1", "updated": "2013-09-25T08:48:06.000Z" } ], "analyses": { "subjects": [ "37D25", "28D05", "37A50", "60F17" ], "keywords": [ "nonuniformly hyperbolic dynamical systems", "stable lévy processes", "weak convergence", "weak invariance principles", "functional limit theorems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.6429M" } } }