{ "id": "1309.6414", "version": "v1", "published": "2013-09-25T07:26:30.000Z", "updated": "2013-09-25T07:26:30.000Z", "title": "Uniqueness of Stable Processes with Drift", "authors": [ "Zhen-Qing Chen", "Longmin Wang" ], "categories": [ "math.PR" ], "abstract": "Suppose that $d\\geq1$ and $\\alpha\\in (1, 2)$. Let $Y$ be a rotationally symmetric $\\alpha$-stable process on $\\R^d$ and $b$ a $\\R^d$-valued measurable function on $\\R^d$ belonging to a certain Kato class of $Y$. We show that $\\rd X^b_t=\\rd Y_t+b(X^b_t)\\rd t$ with $X^b_0=x$ has a unique weak solution for every $x\\in \\R^d$. Let $\\sL^b=-(-\\Delta)^{\\alpha/2} + b \\cdot \\nabla$, which is the infinitesimal generator of $X^b$. Denote by $C^\\infty_c(\\R^d)$ the space of smooth functions on $\\R^d$ with compact support. We further show that the martingale problem for $(\\sL^b, C^\\infty_c(\\R^d))$ has a unique solution for each initial value $x\\in \\R^d$.", "revisions": [ { "version": "v1", "updated": "2013-09-25T07:26:30.000Z" } ], "analyses": { "subjects": [ "60H10", "47G20", "60G52" ], "keywords": [ "stable processes", "uniqueness", "unique weak solution", "infinitesimal generator", "kato class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.6414C" } } }