{ "id": "1309.6173", "version": "v1", "published": "2013-09-24T14:18:27.000Z", "updated": "2013-09-24T14:18:27.000Z", "title": "Rate of Convergence to Barenblatt Profiles for the Fast Diffusion Equation with a Critical Exponent", "authors": [ "Marek Fila", "John R. King", "Michael Winkler" ], "categories": [ "math.AP" ], "abstract": "We study the asymptotic behaviour near extinction of positive solutions of the Cauchy problem for the fast diffusion equation with a critical exponent. After a suitable rescaling which yields a non--linear Fokker--Planck equation, we find a continuum of algebraic rates of convergence to a self--similar profile. These rates depend explicitly on the spatial decay rates of initial data. This improves a previous result on slow convergence for the critical fast diffusion equation ({\\sc Bonforte et al}. in Arch Rat Mech Anal 196:631--680, 2010) and provides answers to some open problems.", "revisions": [ { "version": "v1", "updated": "2013-09-24T14:18:27.000Z" } ], "analyses": { "keywords": [ "critical exponent", "barenblatt profiles", "arch rat mech anal", "critical fast diffusion equation", "non-linear fokker-planck equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.6173F" } } }