{ "id": "1309.5898", "version": "v3", "published": "2013-09-23T17:58:25.000Z", "updated": "2014-10-29T13:58:56.000Z", "title": "On the extreme points of quantum channels", "authors": [ "Shmuel Friedland", "Raphael Loewy" ], "comment": "Slightly revised version, 19 pages", "categories": [ "math-ph", "math.MP", "quant-ph" ], "abstract": "Let L(m,n) denote the convex set of completely positive trace preserving operators from C^{m x m} to C^{n x n}$, i.e quantum channels. We give a necessary condition for L in L(m,n) to be an extreme point. We show that generically, this condition is also sufficient. We characterize completely the extreme points of L_(2,2) and L(3,2), i.e. quantum channels from qubits to qubits and from qutrits to qubits.", "revisions": [ { "version": "v2", "updated": "2013-11-21T16:48:30.000Z", "comment": "Significantly revised version, 20 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-10-29T13:58:56.000Z" } ], "analyses": { "subjects": [ "15B48", "47B65", "94A17", "94A40" ], "keywords": [ "quantum channels", "extreme point", "positive trace preserving operators", "necessary condition", "convex set" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.5898F" } } }