{ "id": "1309.5839", "version": "v3", "published": "2013-09-23T15:20:09.000Z", "updated": "2014-02-12T20:14:46.000Z", "title": "Two weight norm inequalities for the $g$ function", "authors": [ "Michael T Lacey", "Kangwei Li" ], "comment": "15 pages. Reflects the report from referee", "categories": [ "math.CA" ], "abstract": "Given two weights $\\sigma, w$ on $\\mathbb R ^{n}$, the classical $g$-function satisfies the norm inequality $\\lVert g (f\\sigma)\\rVert_{L ^2 (w)} \\lesssim \\lVert f\\rVert_{L ^2 (\\sigma)}$ if and only if the two weight Muckenhoupt $A_2$ condition holds, and a family of testing conditions holds, namely \\begin{equation*} \\iint_{Q (I)} (\\nabla P_t (\\sigma \\mathbf 1_I)(x, t))^2 \\; dw \\, t dt \\lesssim \\sigma (I) \\end{equation*} uniformly over all cubes $I \\subset \\mathbb R ^{n}$, and $Q (I)$ is the Carleson box over $I$. A corresponding characterization for the intrinsic square function of Wilson also holds.", "revisions": [ { "version": "v3", "updated": "2014-02-12T20:14:46.000Z" } ], "analyses": { "keywords": [ "weight norm inequalities", "norm inequality", "intrinsic square function", "weight muckenhoupt", "condition holds" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.5839L" } } }