{ "id": "1309.5682", "version": "v1", "published": "2013-09-23T02:10:42.000Z", "updated": "2013-09-23T02:10:42.000Z", "title": "Variation of the canonical height in a family of rational maps", "authors": [ "Dragos Ghioca", "Niki Myrto Mavraki" ], "categories": [ "math.NT" ], "abstract": "Let $d\\ge 2$ be an integer, let $c(t)$ be any rational map, and let $f_t(z) := (z^d+t)/z$ be a family of rational maps indexed by t. For each algebraic number $t$, we let $h_{f_t}(c(t))$ be the canonical height of $c(t)$ with respect to the rational map $f_t$. We prove that the map $H(t):=h_{f_t}(c(t))$ (as $t$ varies among the algebraic numbers) is a Weil height.", "revisions": [ { "version": "v1", "updated": "2013-09-23T02:10:42.000Z" } ], "analyses": { "keywords": [ "canonical height", "algebraic number", "weil height", "rational maps" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.5682G" } } }