{ "id": "1309.4935", "version": "v2", "published": "2013-09-19T11:27:42.000Z", "updated": "2015-02-10T14:53:21.000Z", "title": "On the continuity of the probabilistic representation of a semilinear Neumann--Dirichlet problem", "authors": [ "Lucian Maticiuc", "Aurel Răşcanu" ], "comment": "A slight change to the title has been made. Also we changed the structure of the article by creating Sections. Some new proofs have been added", "categories": [ "math.PR" ], "abstract": "In this article we prove the continuity of the deterministic function $u:[0,T]\\times \\mathcal{\\bar{D}}\\rightarrow \\mathbb{R}$, defined by $u(t,x):=Y_{t}^{t,x}$, where the process $(Y_{s}^{t,x})_{s\\in[t,T]}$ is given by the generalized multivalued backward stochastic differential equation: \\begin{equation*} \\left\\{ \\begin{array}{l} -dY_{s}^{t,x}+\\partial \\varphi(Y_{s}^{t,x})ds+\\partial\\psi(Y_{s}^{t,x})dA_{s}^{t,x}\\ni f(s,X_{s}^{t,x},Y_{s}^{t,x})ds \\\\ \\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;+g(s,X_{s}^{t,x},Y_{s}^{t,x})dA_{s}^{t,x}-Z_{s}^{t,x}dW_{s}~,\\;t\\leq s < T, \\\\ {Y_{T}=h(X_{T}^{t,x}).} \\end{array} \\right. \\end{equation*} Here, the process $(X_{s}^{t,x},A_{s}^{t,x})_{s\\geq t}$ is the solution of a stochastic differential equation with reflecting boundary conditions.", "revisions": [ { "version": "v1", "updated": "2013-09-19T11:27:42.000Z", "title": "On the continuity of $u(t,x)=Y_{t}^{t,x}$ from Feynman-Kac formula for a Neumann-Dirichlet problem", "abstract": "In this note we prove the continuity of the deterministic function $u:[0,T] \\times \\mathcal{\\bar{D}}\\rightarrow \\mathbb{R}$, $u(t,x)=Y_{t}^{t,x}$, where process $(Y_{s}^{t,x})_{s\\in [t,T]}$ is defined by the generalized multivalued backward stochastic differential equation: \\begin{equation*} \\left\\{\\begin{array}{r} dY_{s}^{t,x}{+}F(s,X_{s}^{t,x},Y_{s}^{t,x})ds{+} G(s,X_{s}^{t,x},Y_{s}^{t,x})dA_{s}^{t,x}\\in \\partial \\varphi (Y_{s}^{t,x})ds\\medskip \\\\ {+}\\partial \\psi (Y_{s}^{t,x})dA_{s}^{t,x}{+}Z_{s}^{t,x}dW_{s},\\;t\\leq s\\leq T,\\medskip \\\\ \\multicolumn{1}{l}{Y_{T}=\\xi .} \\end{array} \\right. \\end{equation*} The process $(X_{s}^{t,x},A_{s}^{t,x})_{s\\geq t}$ is given by a stochastic differential equation with reflecting boundary conditions.", "comment": "17 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-02-10T14:53:21.000Z" } ], "analyses": { "keywords": [ "feynman-kac formula", "neumann-dirichlet problem", "continuity", "multivalued backward stochastic differential equation", "deterministic function" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.4935M" } } }