{ "id": "1309.4322", "version": "v1", "published": "2013-09-17T14:22:44.000Z", "updated": "2013-09-17T14:22:44.000Z", "title": "Generators with a closure relation", "authors": [ "Felix Schwenninger", "Hans Zwart" ], "comment": "9 pages", "categories": [ "math.FA" ], "abstract": "Assume that a block operator of the form $\\left(\\begin{smallmatrix}A_{1}\\\\A_{2}\\quad 0\\end{smallmatrix}\\right)$, acting on the Banach space $X_{1}\\times X_{2}$, generates a contraction $C_{0}$-semigroup. We show that the operator $A_{S}$ defined by $A_{S}x=A_{1}\\left(\\begin{smallmatrix}x\\\\SA_{2}x\\end{smallmatrix}\\right)$ with the natural domain generates a contraction semigroup on $X_{1}$. Here, $S$ is a boundedly invertible operator for which $\\epsilon\\ide-S^{-1}$ is dissipative for some $\\epsilon>0$. With this result the existence and uniqueness of solutions of the heat equation can be derived from the wave equation.", "revisions": [ { "version": "v1", "updated": "2013-09-17T14:22:44.000Z" } ], "analyses": { "subjects": [ "47D06", "47B44", "34G10" ], "keywords": [ "closure relation", "generators", "natural domain generates", "block operator", "wave equation" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.4322S" } } }