{ "id": "1309.4315", "version": "v4", "published": "2013-09-17T14:06:10.000Z", "updated": "2014-06-19T20:03:33.000Z", "title": "Non-conventional ergodic averages for several commuting actions of an amenable group", "authors": [ "Tim Austin" ], "comment": "40 pages [Oct 28th 2013:] Former appendix moved to separate note: http://arxiv.org/abs/1310.6781 [Jun 19th 2014:] Updated following referee's suggestions", "categories": [ "math.DS", "math.CO", "math.GR" ], "abstract": "Let $(X,\\mu)$ be a probability space, $G$ a countable amenable group and $(F_n)_n$ a left F\\o lner sequence in $G$. This paper analyzes the non-conventional ergodic averages \\[\\frac{1}{|F_n|}\\sum_{g \\in F_n}\\prod_{i=1}^d (f_i\\circ T_1^g\\cdots T_i^g)\\] associated to a commuting tuple of $\\mu$-preserving actions $T_1$, ..., $T_d:G\\curvearrowright X$ and $f_1$, ..., $f_d \\in L^\\infty(\\mu)$. We prove that these averages always converge in $\\|\\cdot\\|_2$, and that they witness a multiple recurrence phenomenon when $f_1 = \\ldots = f_d = 1_A$ for a non-negligible set $A\\subseteq X$. This proves a conjecture of Bergelson, McCutcheon and Zhang. The proof relies on an adaptation from earlier works of the machinery of sated extensions.", "revisions": [ { "version": "v4", "updated": "2014-06-19T20:03:33.000Z" } ], "analyses": { "subjects": [ "37A25", "28D15" ], "keywords": [ "non-conventional ergodic averages", "amenable group", "commuting actions", "multiple recurrence phenomenon", "probability space" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.4315A" } } }