{ "id": "1309.4154", "version": "v1", "published": "2013-09-17T02:18:57.000Z", "updated": "2013-09-17T02:18:57.000Z", "title": "A neighborhood condition for fractional ID-[a,b]-factor-critical graphs", "authors": [ "Sizhong Zhou", "Fan Yang", "Zhiren Sun" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph of order $n$, and let $a$ and $b$ be two integers with $1\\leq a\\leq b$. Let $h: E(G)\\rightarrow [0,1]$ be a function. If $a\\leq\\sum_{e\\ni x}h(e)\\leq b$ holds for any $x\\in V(G)$, then we call $G[F_h]$ a fractional $[a,b]$-factor of $G$ with indicator function $h$ where $F_h=\\{e\\in E(G): h(e)>0\\}$. A graph $G$ is fractional independent-set-deletable $[a,b]$-factor-critical (in short, fractional ID-$[a,b]$-factor-critical) if $G-I$ has a fractional $[a,b]$-factor for every independent set $I$ of $G$. In this paper, it is proved that if $n\\geq\\frac{(a+2b)(2a+2b-3)+1}{b}$, $\\delta(G)\\geq\\frac{bn}{a+2b}+a$ and $|N_G(x)\\cup N_G(y)|\\geq\\frac{(a+b)n}{a+2b}$ for any two nonadjacent vertices $x,y\\in V(G)$, then $G$ is fractional ID-$[a,b]$-factor-critical. Furthermore, it is shown that this result is best possible in some sense.", "revisions": [ { "version": "v1", "updated": "2013-09-17T02:18:57.000Z" } ], "analyses": { "subjects": [ "05C70", "05C72", "05C35" ], "keywords": [ "fractional", "neighborhood condition", "indicator function", "independent set", "nonadjacent vertices" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.4154Z" } } }