{ "id": "1309.4126", "version": "v4", "published": "2013-09-16T21:35:04.000Z", "updated": "2014-11-25T16:16:48.000Z", "title": "Electron transport in multiterminal networks of Majorana bound states", "authors": [ "Luzie Weithofer", "Patrik Recher", "Thomas L. Schmidt" ], "comment": "9 pages, 3 figures", "journal": "Phys. Rev. B 90, 205416 (2014)", "doi": "10.1103/PhysRevB.90.205416", "categories": [ "cond-mat.mes-hall" ], "abstract": "We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics (FCS). In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T~junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic non-local signatures in electronic transport. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions.", "revisions": [ { "version": "v3", "updated": "2014-06-05T15:10:01.000Z", "abstract": "We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics (FCS). In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically non-trivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T-junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic non-local signatures in electronic transport.", "comment": "9 pages, 3 figures, extended version with supplementary material including a comparison to a microscopic tight-binding model for the T-junction and numerical transport results", "journal": null, "doi": null }, { "version": "v4", "updated": "2014-11-25T16:16:48.000Z" } ], "analyses": { "subjects": [ "74.81.Fa", "74.25.fc", "74.45.+c", "74.78.Na" ], "keywords": [ "electron transport", "networks hosting majorana bound states", "multiterminal networks hosting majorana bound", "characteristic non-local signatures", "elementary transport processes" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review B", "year": 2014, "month": "Nov", "volume": 90, "number": 20, "pages": 205416 }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1254728, "adsabs": "2014PhRvB..90t5416W" } } }